###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Comparing and Ordering Rational Numbers

Given a problem situation, the student will compare and order integers, percents, positive and negative fractions and decimals with or without a calculator.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Comparing and Contrasting Proportional and Non-Proportional Linear Relationships

Given problem solving situations, the student will solve the problems by comparing and contrasting proportional and non-proportional linear relationships.

###
Periodic Table Families

Given descriptions or specific element groups, students will use a Periodic Table to relate properties of chemical families to position on the table.

###
Atomic Theory: Dalton, Thomson and Rutherford

Given scenarios or summaries of historical events leading to modern-day atomic theory, students will identify the author and experimental design of each and the conclusion drawn from these experiments.

###
Covalent Bonding: Electron Dot Diagrams

Given descriptions, diagrams, scenarios, or chemical symbols, students will model covalent bonds using electron dot formula (Lewis structures).

###
Nomenclature of Ionic Compounds

Given descriptors, diagrams. or scenarios, students will write and name the chemical formulas of common polyatomic ions and ionic compounds containing main group or transition metals and bases.

###
Mole Conversions

Given descriptions or chemical formula of a substance, students will convert between mass, moles, and particles for a sample of material.

###
Quantifying Changes in Chemical Reactions: Balancing Equations

Given descriptions or chemical formulas of the reactants and the products of chemical reactions, students will apply the law of conservation of mass and manipulate coefficients to balance chemical equations.

###
Quantifying Changes in Chemical Reactions: Empirical Formula

Given the descriptions or chemical formulas, students will use relative masses of elements in substance to calculate and determine the ratio of atoms of each element in a compound so as to determine percent composition or empirical formula.

###
Graphing Proportional Relationships

Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.

###
Mean Absolute Deviation

Given a set of data with no more than 10 data points, students will be able to determine and use the mean absolute deviation to describe the spread of the data.

###
Generalizing about Populations from Random Samples

Given a population with known characteristics, students will be able to use a variety of methods to generate random samples of the same size in order to understand how a random sample is representative of a population.